Skip to content

Checks

Module containing data quality check classes.

AverageCheck

Bases: ColumnTransformationCheck

Compute the average (AVG) of a numeric column for the filtered rows.

Inherits from ColumnTransformationCheck. Thresholds apply to the computed average.

Source code in src/koality/checks.py
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
class AverageCheck(ColumnTransformationCheck):
    """Compute the average (AVG) of a numeric column for the filtered rows.

    Inherits from ColumnTransformationCheck. Thresholds apply to the computed average.
    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the average check."""
        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="avg",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for computing the average."""
        return f"AVG({self.check_column}) AS {self.name}"

__init__(database_accessor, database_provider, table, check_column, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the average check.

Source code in src/koality/checks.py
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the average check."""
    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="avg",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

transformation_statement()

Return the SQL statement for computing the average.

Source code in src/koality/checks.py
986
987
988
def transformation_statement(self) -> str:
    """Return the SQL statement for computing the average."""
    return f"AVG({self.check_column}) AS {self.name}"

ColumnTransformationCheck

Bases: DataQualityCheck, ABC

Abstract class for data quality checks performing checks on a specific column of a table.

Parameters:

Name Type Description Default
transformation_name str

The name to refer to this check (in combination with check_column)

required
table str

Name of BQ table (e.g., "project.dataset.table")

required
check_column str | None

Name of column to be checked (e.g., "category")

None
lower_threshold float

Check will fail if check result < lower_threshold

-inf
upper_threshold float

Check will fail if check result > upper_threshold

inf
monitor_only bool

If True, no checks will be performed

False
extra_info str | None

Optional additional text that will be added to the end of the failure message

None
Source code in src/koality/checks.py
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
class ColumnTransformationCheck(DataQualityCheck, abc.ABC):
    """Abstract class for data quality checks performing checks on a specific column of a table.

    Args:
        transformation_name: The name to refer to this check (in combination with check_column)
        table: Name of BQ table (e.g., "project.dataset.table")
        check_column: Name of column to be checked (e.g., "category")
        lower_threshold: Check will fail if check result < lower_threshold
        upper_threshold: Check will fail if check result > upper_threshold
        monitor_only: If True, no checks will be performed
        extra_info: Optional additional text that will be added to the end of the failure message

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        transformation_name: str,
        table: str,
        check_column: str | None = None,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the column transformation check."""
        self.transformation_name = transformation_name

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def assemble_name(self) -> str:
        """Return the check name combining column and transformation."""
        return f"{self.check_column.split('.')[-1]}_{self.transformation_name}"

    @abc.abstractmethod
    def transformation_statement(self) -> str:
        """Return the SQL transformation statement for this check."""

    def query_boilerplate(self, metric_statement: str) -> str:
        """Return the base SQL query structure with the given metric statement."""
        return f"""
        SELECT
            {metric_statement}
        FROM
            {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
        """

    def assemble_query(self) -> str:
        """Assemble the complete SQL query for this check."""
        main_query = self.query_boilerplate(self.transformation_statement())

        if where_statement := self.assemble_where_statement(self.filters):
            return main_query + "\n" + where_statement

        return main_query

    def assemble_data_exists_query(self) -> str:
        """Assemble the SQL query to check if data exists in the table."""
        data_exists_query = f"""
        SELECT
            IF(COUNT(*) > 0, '', '{self.table}') AS empty_table
        FROM
            {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
        """

        if where_statement := self.assemble_where_statement(self.filters):
            return f"{data_exists_query}\n{where_statement}"

        return data_exists_query

__init__(database_accessor, database_provider, transformation_name, table, check_column=None, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the column transformation check.

Source code in src/koality/checks.py
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    transformation_name: str,
    table: str,
    check_column: str | None = None,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the column transformation check."""
    self.transformation_name = transformation_name

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

assemble_data_exists_query()

Assemble the SQL query to check if data exists in the table.

Source code in src/koality/checks.py
503
504
505
506
507
508
509
510
511
512
513
514
515
def assemble_data_exists_query(self) -> str:
    """Assemble the SQL query to check if data exists in the table."""
    data_exists_query = f"""
    SELECT
        IF(COUNT(*) > 0, '', '{self.table}') AS empty_table
    FROM
        {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
    """

    if where_statement := self.assemble_where_statement(self.filters):
        return f"{data_exists_query}\n{where_statement}"

    return data_exists_query

assemble_name()

Return the check name combining column and transformation.

Source code in src/koality/checks.py
477
478
479
def assemble_name(self) -> str:
    """Return the check name combining column and transformation."""
    return f"{self.check_column.split('.')[-1]}_{self.transformation_name}"

assemble_query()

Assemble the complete SQL query for this check.

Source code in src/koality/checks.py
494
495
496
497
498
499
500
501
def assemble_query(self) -> str:
    """Assemble the complete SQL query for this check."""
    main_query = self.query_boilerplate(self.transformation_statement())

    if where_statement := self.assemble_where_statement(self.filters):
        return main_query + "\n" + where_statement

    return main_query

query_boilerplate(metric_statement)

Return the base SQL query structure with the given metric statement.

Source code in src/koality/checks.py
485
486
487
488
489
490
491
492
def query_boilerplate(self, metric_statement: str) -> str:
    """Return the base SQL query structure with the given metric statement."""
    return f"""
    SELECT
        {metric_statement}
    FROM
        {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
    """

transformation_statement() abstractmethod

Return the SQL transformation statement for this check.

Source code in src/koality/checks.py
481
482
483
@abc.abstractmethod
def transformation_statement(self) -> str:
    """Return the SQL transformation statement for this check."""

CountCheck

Bases: ColumnTransformationCheck

Check the number of rows or distinct values of a specific column.

Inherits from koality.checks.ColumnTransformationCheck, and thus, we refer to argument descriptions in its super class, except for the distinct argument which is added in this subclass.

Parameters:

Name Type Description Default
distinct bool

Indicates if the count should count all rows or only distinct values of a specific column. Note: distinct=True cannot be used with check_column="*".

False

Example: CountCheck( database_accessor="my-gcp-project.SHOP01", database_provider=None, table="my-gcp-project.SHOP01.skufeed_latest", check_column="sku_id", distinct=True, filters={ "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, "date": {"column": "DATE", "value": "2023-01-01", "type": "date"}, }, lower_threshold=10000.0, upper_threshold=99999.0, )

Source code in src/koality/checks.py
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
class CountCheck(ColumnTransformationCheck):
    """Check the number of rows or distinct values of a specific column.

    Inherits from `koality.checks.ColumnTransformationCheck`, and thus, we refer to
    argument descriptions in its super class, except for the `distinct` argument which
    is added in this subclass.

    Args:
        distinct: Indicates if the count should count all rows or only distinct values
                  of a specific column.
                  Note: distinct=True cannot be used with check_column="*".

    Example:
    CountCheck(
        database_accessor="my-gcp-project.SHOP01",
        database_provider=None,
        table="my-gcp-project.SHOP01.skufeed_latest",
        check_column="sku_id",
        distinct=True,
        filters={
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
            "date": {"column": "DATE", "value": "2023-01-01", "type": "date"},
        },
        lower_threshold=10000.0,
        upper_threshold=99999.0,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        distinct: bool = False,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the count check."""
        if check_column == "*" and distinct:
            msg = "Cannot COUNT(DISTINCT *)! Either set check_column != '*' or distinct = False."
            raise KoalityError(msg)

        self.distinct = distinct

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="distinct_count" if distinct else "count",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for counting rows or distinct values."""
        if self.distinct:
            return f"COUNT(DISTINCT {self.check_column}) AS {self.name}"

        return f"COUNT({self.check_column}) AS {self.name}"

    def assemble_name(self) -> str:
        """Return the check name, using 'row_' prefix for wildcard columns."""
        if self.check_column == "*":
            return f"row_{self.transformation_name}"

        return super().assemble_name()

__init__(database_accessor, database_provider, table, check_column, lower_threshold=-math.inf, upper_threshold=math.inf, *, distinct=False, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the count check.

Source code in src/koality/checks.py
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    distinct: bool = False,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the count check."""
    if check_column == "*" and distinct:
        msg = "Cannot COUNT(DISTINCT *)! Either set check_column != '*' or distinct = False."
        raise KoalityError(msg)

    self.distinct = distinct

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="distinct_count" if distinct else "count",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

assemble_name()

Return the check name, using 'row_' prefix for wildcard columns.

Source code in src/koality/checks.py
941
942
943
944
945
946
def assemble_name(self) -> str:
    """Return the check name, using 'row_' prefix for wildcard columns."""
    if self.check_column == "*":
        return f"row_{self.transformation_name}"

    return super().assemble_name()

transformation_statement()

Return the SQL statement for counting rows or distinct values.

Source code in src/koality/checks.py
934
935
936
937
938
939
def transformation_statement(self) -> str:
    """Return the SQL statement for counting rows or distinct values."""
    if self.distinct:
        return f"COUNT(DISTINCT {self.check_column}) AS {self.name}"

    return f"COUNT({self.check_column}) AS {self.name}"

DataQualityCheck

Bases: ABC

Abstract class for all data quality checks.

Provides generic methods relevant to all data quality check classes.

Parameters:

Name Type Description Default
table str

Name of BQ table (e.g., "project.dataset.table")

required
check_column str | None

Name of column to be checked (e.g., "category")

None
lower_threshold float

Check will fail if check result < lower_threshold

-inf
upper_threshold float

Check will fail if check result > upper_threshold

inf
monitor_only bool

If True, no checks will be performed

False
extra_info str | None

Optional additional text that will be added to the end of the failure message

None
Source code in src/koality/checks.py
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
class DataQualityCheck(abc.ABC):
    """Abstract class for all data quality checks.

    Provides generic methods relevant to all data quality check classes.

    Args:
        table: Name of BQ table (e.g., "project.dataset.table")
        check_column: Name of column to be checked (e.g., "category")
        lower_threshold: Check will fail if check result < lower_threshold
        upper_threshold: Check will fail if check result > upper_threshold
        monitor_only: If True, no checks will be performed
        extra_info: Optional additional text that will be added to the end of the failure message

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str | None = None,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the data quality check with configuration parameters."""
        self.database_provider = database_provider
        self.database_accessor = database_accessor
        self.query_wrapped = database_provider.type.lower() == "bigquery" if database_provider else False
        self.table = table
        self.lower_threshold = lower_threshold
        self.upper_threshold = upper_threshold
        self.monitor_only = monitor_only
        self.extra_info_string = f" {extra_info}" if extra_info else ""
        self.date_info_string = f" ({date_info})" if date_info else ""

        self.status = "NOT_EXECUTED"
        self.message: str | None = None
        self.bytes_billed: int = 0

        # Identifier format configuration
        self.identifier_format = identifier_format

        # for where filter handling
        self.filters = self.get_filters(filters or {})

        # Find identifier filter by type and format based on identifier_format setting
        identifier_filter_result = self.get_identifier_filter(self.filters)
        if identifier_filter_result:
            filter_name, filter_config = identifier_filter_result
            value = filter_config.get("value", "ALL")
            column = filter_config.get("column", "")

            if self.identifier_format == "identifier":
                # Format as "column=value"
                self.identifier = f"{column}={value}" if column else str(value)
                self.identifier_column = "IDENTIFIER"
            elif self.identifier_format == "filter_name":
                # Use filter name as column, value as-is
                self.identifier = str(value)
                self.identifier_column = filter_name.upper()
            else:  # column_name
                # Use database column name as column, value as-is
                self.identifier = str(value)
                self.identifier_column = column.upper() if column else "IDENTIFIER"
        else:
            self.identifier = "ALL"
            self.identifier_column = "IDENTIFIER"

        # Find date filter by type and store the filter dict
        date_filter_result = self.get_date_filter(self.filters)
        if date_filter_result:
            self.date_filter = date_filter_result[1]
        else:
            self.date_filter = None

        if check_column is None:
            self.check_column = "*"
        else:
            self.check_column = check_column

        self.name = self.assemble_name()
        self.result: dict[str, Any] | None = None

    @property
    def query(self) -> str:
        """Return the assembled SQL query for this check."""
        return self.assemble_query()

    @abc.abstractmethod
    def assemble_query(self) -> str:
        """Assemble and return the SQL query for this check."""

    @abc.abstractmethod
    def assemble_data_exists_query(self) -> str:
        """Assemble and return the SQL query to check if data exists."""

    @abc.abstractmethod
    def assemble_name(self) -> str:
        """Assemble and return the name for this check."""

    def __repr__(self) -> str:
        """Return string representation combining identifier and check name."""
        if not hasattr(self, "identifier"):
            return self.name

        return f"{self.identifier}_{self.name}"

    def data_check(self, duckdb_client: duckdb.DuckDBPyConnection) -> dict:
        """Check if database tables used in the actual check contain data.

        Note: The returned result dict and failure message will be later
        aggregated in order to avoid duplicates in the reported failures.

        Args:
            duckdb_client: DuckDB client for interacting with DuckDB

        Returns:
            If there is a table without data, a dict containing information about
            missing data will be returned, otherwise an empty dict indicating that
            data exists.

        """
        is_empty_table = False
        try:
            result = execute_query(
                self.assemble_data_exists_query(),
                duckdb_client,
                self.database_accessor,
                self.database_provider,
            ).fetchone()
        except duckdb.Error:
            empty_table = f"Error while executing data check query on {self.table}"
        else:
            empty_table = result[0] if result else self.table
            is_empty_table = bool(empty_table)

        if not is_empty_table:
            return {}

        date = self.date_filter["value"] if self.date_filter else dt.datetime.now(tz=dt.UTC).date().isoformat()
        self.message = f"No data in {empty_table} on {date} for: {self.identifier}"
        self.status = "FAIL"
        return {
            "DATE": date,
            "METRIC_NAME": "data_exists",
            self.identifier_column: self.identifier,
            "TABLE": empty_table,
        }

    def _check(self, duckdb_client: duckdb.DuckDBPyConnection, query: str) -> tuple[list[dict], str | None]:
        data = []
        error = None
        try:
            result = execute_query(
                query,
                duckdb_client,
                self.database_accessor,
                self.database_provider,
            )
        except duckdb.Error as e:
            error = str(e)
        else:
            data = [dict(zip(result.columns, row, strict=False)) for row in result.fetchall()]
        return data, error

    def check(self, duckdb_client: duckdb.DuckDBPyConnection) -> dict:
        """Perform the data quality check and return results.

        If the check is set to `monitor_only`, the results of the
        check will be documented without comparison to the lower and
        upper thresholds.

        Args:
            duckdb_client: DuckDB client for interacting with DuckDB

        Returns:
            A dict containing all information and the result of the check

        """
        result, error = self._check(duckdb_client, self.query)

        check_value = result[0][self.name] if result else None
        check_value = float(check_value) if check_value is not None else None
        if error:
            result = "ERROR"
            self.message = f"{self.identifier}: Metric {self.name} query errored with {error}"
        elif self.monitor_only:
            result = "MONITOR_ONLY"
        else:
            success = check_value is not None and self.lower_threshold <= check_value <= self.upper_threshold
            result = "SUCCESS" if success else "FAIL"

        date = self.date_filter["value"] if self.date_filter else dt.datetime.now(tz=dt.UTC).date().isoformat()
        result_dict = {
            "DATE": date,
            "METRIC_NAME": self.name,
            self.identifier_column: self.identifier,
            "TABLE": self.table,
            "COLUMN": self.check_column,
            "VALUE": check_value,
            "LOWER_THRESHOLD": self.lower_threshold,
            "UPPER_THRESHOLD": self.upper_threshold,
            "RESULT": result,
        }

        if result_dict["RESULT"] == "FAIL":
            value_string = f"{result_dict['VALUE']:.{FLOAT_PRECISION}f}" if result_dict["VALUE"] is not None else "NULL"
            self.message = (
                f"{self.identifier}: Metric {self.name} failed on {date}{self.date_info_string} "
                f"for {self.table}. Value {value_string} is not between {self.lower_threshold} and "
                f"{self.upper_threshold}.{self.extra_info_string}"
            )
        self.status = result_dict["RESULT"]
        self.result = result_dict

        return result_dict

    def __call__(self, duckdb_client: duckdb.DuckDBPyConnection) -> dict:
        """Execute the data quality check and return results."""
        data_check_result = self.data_check(duckdb_client)
        if data_check_result:
            return data_check_result

        return self.check(duckdb_client)

    @staticmethod
    def get_filters(filters_config: dict[str, Any]) -> dict[str, dict[str, Any]]:
        """Generate a filter dict from filter configurations.

        Args:
            filters_config: Dictionary containing filter configurations.

        Example YAML:
            filters:
              partition_date:
                column: BQ_PARTITIONTIME
                value: yesterday-2  # 2 days before yesterday
                type: date  # auto-parses value as date
              shop_id:
                column: shopId
                value: EC0601
                type: identifier
              revenue:
                column: total_revenue
                value: 1000
                operator: ">="
              category:
                column: category
                value: ["toys", "electronics"]
                operator: "IN"

        Returns:
            A dict of the format:
                {"partition_date": {"column": "DATE", "value": "2020-01-01", "operator": "=", "type": "date"}, ...}

        """
        filters: dict[str, dict[str, Any]] = {}

        for filter_name, config in filters_config.items():
            if isinstance(config, FilterConfig):
                config_dict = config.model_dump()
            elif isinstance(config, dict):
                config_dict = config
            else:
                config_dict = {"value": config}

            column = config_dict.get("column")
            if column is None:
                continue

            value = config_dict.get("value")
            filter_type = config_dict.get("type", "other")

            # Auto-parse date values when type is "date" or parse_as_date is True
            should_parse = filter_type == "date" or config_dict.get("parse_as_date", False)
            if should_parse and value is not None:
                value = parse_date(str(value))

            operator = config_dict.get("operator", "=")

            filters[filter_name] = {
                "column": column,
                "value": value,
                "operator": operator,
                "type": filter_type,
            }

        return filters

    @staticmethod
    def get_date_filter(filters: dict[str, dict[str, Any]]) -> tuple[str, dict[str, Any]] | None:
        """Find the date filter (type='date') from the filters dict.

        Args:
            filters: The filters dict from get_filters().

        Returns:
            A tuple of (filter_name, filter_config) if found, None otherwise.

        """
        for name, config in filters.items():
            if config.get("type") == "date":
                return name, config
        return None

    @staticmethod
    def get_identifier_filter(filters: dict[str, dict[str, Any]]) -> tuple[str, dict[str, Any]] | None:
        """Find the identifier filter (type='identifier') from the filters dict.

        Args:
            filters: The filters dict from get_filters().

        Returns:
            A tuple of (filter_name, filter_config) if found, None otherwise.

        """
        for name, config in filters.items():
            if config.get("type") == "identifier":
                return (name, config)
        return None

    @staticmethod
    def _format_filter_value(
        value: str | float | list | tuple | set,
        operator: str,
    ) -> str:
        """Format a filter value for SQL based on the operator.

        Args:
            value: The filter value (can be a single value or list for IN/NOT IN).
            operator: The SQL operator being used.

        Returns:
            Formatted SQL value string.

        """
        if operator in ("IN", "NOT IN"):
            if isinstance(value, (list, tuple, set)):
                formatted_values = ", ".join(f"'{v}'" for v in value)
                return f"({formatted_values})"
            return f"('{value}')"

        if isinstance(value, (int, float)) and not isinstance(value, bool):
            return str(value)

        return f"'{value}'"

    @staticmethod
    def assemble_where_statement(filters: dict[str, dict[str, Any]]) -> str:
        """Generate the where statement for the check query using the specified filters.

        Args:
            filters: A dict containing filter specifications, e.g.,
                `{
                    'identifier': {
                        'column': 'shop_code',
                        'value': 'SHOP01',
                        'operator': '=',
                        'type': 'identifier'
                    },
                    'date': {
                        'column': 'date',
                        'value': '2023-01-01',
                        'operator': '=',
                        'type': 'date'
                    },
                    'revenue': {
                        'column': 'total_revenue',
                        'value': 1000,
                        'operator': '>='
                    },
                    'category': {
                        'column': 'category',
                        'value': ['toys', 'electronics'],
                        'operator': 'IN'
                    }
                }`

        Returns:
            A WHERE statement to restrict the data being used for the check, e.g.,
            'WHERE shop_code = 'SHOP01' AND date = '2023-01-01' AND total_revenue >= 1000'

        """
        if len(filters) == 0:
            return ""

        filters_statements = []
        for filter_dict in filters.values():
            column = filter_dict["column"]
            value = filter_dict["value"]
            operator = filter_dict.get("operator", "=")

            # Handle NULL values with IS NULL / IS NOT NULL
            if value is None:
                if operator == "!=":
                    filters_statements.append(f"    {column} IS NOT NULL")
                else:
                    filters_statements.append(f"    {column} IS NULL")
                continue

            formatted_value = DataQualityCheck._format_filter_value(value, operator)
            filters_statements.append(f"    {column} {operator} {formatted_value}")

        return "WHERE\n" + "\nAND\n".join(filters_statements)

query property

Return the assembled SQL query for this check.

__call__(duckdb_client)

Execute the data quality check and return results.

Source code in src/koality/checks.py
241
242
243
244
245
246
247
def __call__(self, duckdb_client: duckdb.DuckDBPyConnection) -> dict:
    """Execute the data quality check and return results."""
    data_check_result = self.data_check(duckdb_client)
    if data_check_result:
        return data_check_result

    return self.check(duckdb_client)

__init__(database_accessor, database_provider, table, check_column=None, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the data quality check with configuration parameters.

Source code in src/koality/checks.py
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str | None = None,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the data quality check with configuration parameters."""
    self.database_provider = database_provider
    self.database_accessor = database_accessor
    self.query_wrapped = database_provider.type.lower() == "bigquery" if database_provider else False
    self.table = table
    self.lower_threshold = lower_threshold
    self.upper_threshold = upper_threshold
    self.monitor_only = monitor_only
    self.extra_info_string = f" {extra_info}" if extra_info else ""
    self.date_info_string = f" ({date_info})" if date_info else ""

    self.status = "NOT_EXECUTED"
    self.message: str | None = None
    self.bytes_billed: int = 0

    # Identifier format configuration
    self.identifier_format = identifier_format

    # for where filter handling
    self.filters = self.get_filters(filters or {})

    # Find identifier filter by type and format based on identifier_format setting
    identifier_filter_result = self.get_identifier_filter(self.filters)
    if identifier_filter_result:
        filter_name, filter_config = identifier_filter_result
        value = filter_config.get("value", "ALL")
        column = filter_config.get("column", "")

        if self.identifier_format == "identifier":
            # Format as "column=value"
            self.identifier = f"{column}={value}" if column else str(value)
            self.identifier_column = "IDENTIFIER"
        elif self.identifier_format == "filter_name":
            # Use filter name as column, value as-is
            self.identifier = str(value)
            self.identifier_column = filter_name.upper()
        else:  # column_name
            # Use database column name as column, value as-is
            self.identifier = str(value)
            self.identifier_column = column.upper() if column else "IDENTIFIER"
    else:
        self.identifier = "ALL"
        self.identifier_column = "IDENTIFIER"

    # Find date filter by type and store the filter dict
    date_filter_result = self.get_date_filter(self.filters)
    if date_filter_result:
        self.date_filter = date_filter_result[1]
    else:
        self.date_filter = None

    if check_column is None:
        self.check_column = "*"
    else:
        self.check_column = check_column

    self.name = self.assemble_name()
    self.result: dict[str, Any] | None = None

__repr__()

Return string representation combining identifier and check name.

Source code in src/koality/checks.py
124
125
126
127
128
129
def __repr__(self) -> str:
    """Return string representation combining identifier and check name."""
    if not hasattr(self, "identifier"):
        return self.name

    return f"{self.identifier}_{self.name}"

assemble_data_exists_query() abstractmethod

Assemble and return the SQL query to check if data exists.

Source code in src/koality/checks.py
116
117
118
@abc.abstractmethod
def assemble_data_exists_query(self) -> str:
    """Assemble and return the SQL query to check if data exists."""

assemble_name() abstractmethod

Assemble and return the name for this check.

Source code in src/koality/checks.py
120
121
122
@abc.abstractmethod
def assemble_name(self) -> str:
    """Assemble and return the name for this check."""

assemble_query() abstractmethod

Assemble and return the SQL query for this check.

Source code in src/koality/checks.py
112
113
114
@abc.abstractmethod
def assemble_query(self) -> str:
    """Assemble and return the SQL query for this check."""

assemble_where_statement(filters) staticmethod

Generate the where statement for the check query using the specified filters.

Parameters:

Name Type Description Default
filters dict[str, dict[str, Any]]

A dict containing filter specifications, e.g., { 'identifier': { 'column': 'shop_code', 'value': 'SHOP01', 'operator': '=', 'type': 'identifier' }, 'date': { 'column': 'date', 'value': '2023-01-01', 'operator': '=', 'type': 'date' }, 'revenue': { 'column': 'total_revenue', 'value': 1000, 'operator': '>=' }, 'category': { 'column': 'category', 'value': ['toys', 'electronics'], 'operator': 'IN' } }

required

Returns:

Type Description
str

A WHERE statement to restrict the data being used for the check, e.g.,

str

'WHERE shop_code = 'SHOP01' AND date = '2023-01-01' AND total_revenue >= 1000'

Source code in src/koality/checks.py
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
@staticmethod
def assemble_where_statement(filters: dict[str, dict[str, Any]]) -> str:
    """Generate the where statement for the check query using the specified filters.

    Args:
        filters: A dict containing filter specifications, e.g.,
            `{
                'identifier': {
                    'column': 'shop_code',
                    'value': 'SHOP01',
                    'operator': '=',
                    'type': 'identifier'
                },
                'date': {
                    'column': 'date',
                    'value': '2023-01-01',
                    'operator': '=',
                    'type': 'date'
                },
                'revenue': {
                    'column': 'total_revenue',
                    'value': 1000,
                    'operator': '>='
                },
                'category': {
                    'column': 'category',
                    'value': ['toys', 'electronics'],
                    'operator': 'IN'
                }
            }`

    Returns:
        A WHERE statement to restrict the data being used for the check, e.g.,
        'WHERE shop_code = 'SHOP01' AND date = '2023-01-01' AND total_revenue >= 1000'

    """
    if len(filters) == 0:
        return ""

    filters_statements = []
    for filter_dict in filters.values():
        column = filter_dict["column"]
        value = filter_dict["value"]
        operator = filter_dict.get("operator", "=")

        # Handle NULL values with IS NULL / IS NOT NULL
        if value is None:
            if operator == "!=":
                filters_statements.append(f"    {column} IS NOT NULL")
            else:
                filters_statements.append(f"    {column} IS NULL")
            continue

        formatted_value = DataQualityCheck._format_filter_value(value, operator)
        filters_statements.append(f"    {column} {operator} {formatted_value}")

    return "WHERE\n" + "\nAND\n".join(filters_statements)

check(duckdb_client)

Perform the data quality check and return results.

If the check is set to monitor_only, the results of the check will be documented without comparison to the lower and upper thresholds.

Parameters:

Name Type Description Default
duckdb_client DuckDBPyConnection

DuckDB client for interacting with DuckDB

required

Returns:

Type Description
dict

A dict containing all information and the result of the check

Source code in src/koality/checks.py
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
def check(self, duckdb_client: duckdb.DuckDBPyConnection) -> dict:
    """Perform the data quality check and return results.

    If the check is set to `monitor_only`, the results of the
    check will be documented without comparison to the lower and
    upper thresholds.

    Args:
        duckdb_client: DuckDB client for interacting with DuckDB

    Returns:
        A dict containing all information and the result of the check

    """
    result, error = self._check(duckdb_client, self.query)

    check_value = result[0][self.name] if result else None
    check_value = float(check_value) if check_value is not None else None
    if error:
        result = "ERROR"
        self.message = f"{self.identifier}: Metric {self.name} query errored with {error}"
    elif self.monitor_only:
        result = "MONITOR_ONLY"
    else:
        success = check_value is not None and self.lower_threshold <= check_value <= self.upper_threshold
        result = "SUCCESS" if success else "FAIL"

    date = self.date_filter["value"] if self.date_filter else dt.datetime.now(tz=dt.UTC).date().isoformat()
    result_dict = {
        "DATE": date,
        "METRIC_NAME": self.name,
        self.identifier_column: self.identifier,
        "TABLE": self.table,
        "COLUMN": self.check_column,
        "VALUE": check_value,
        "LOWER_THRESHOLD": self.lower_threshold,
        "UPPER_THRESHOLD": self.upper_threshold,
        "RESULT": result,
    }

    if result_dict["RESULT"] == "FAIL":
        value_string = f"{result_dict['VALUE']:.{FLOAT_PRECISION}f}" if result_dict["VALUE"] is not None else "NULL"
        self.message = (
            f"{self.identifier}: Metric {self.name} failed on {date}{self.date_info_string} "
            f"for {self.table}. Value {value_string} is not between {self.lower_threshold} and "
            f"{self.upper_threshold}.{self.extra_info_string}"
        )
    self.status = result_dict["RESULT"]
    self.result = result_dict

    return result_dict

data_check(duckdb_client)

Check if database tables used in the actual check contain data.

Note: The returned result dict and failure message will be later aggregated in order to avoid duplicates in the reported failures.

Parameters:

Name Type Description Default
duckdb_client DuckDBPyConnection

DuckDB client for interacting with DuckDB

required

Returns:

Type Description
dict

If there is a table without data, a dict containing information about

dict

missing data will be returned, otherwise an empty dict indicating that

dict

data exists.

Source code in src/koality/checks.py
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
def data_check(self, duckdb_client: duckdb.DuckDBPyConnection) -> dict:
    """Check if database tables used in the actual check contain data.

    Note: The returned result dict and failure message will be later
    aggregated in order to avoid duplicates in the reported failures.

    Args:
        duckdb_client: DuckDB client for interacting with DuckDB

    Returns:
        If there is a table without data, a dict containing information about
        missing data will be returned, otherwise an empty dict indicating that
        data exists.

    """
    is_empty_table = False
    try:
        result = execute_query(
            self.assemble_data_exists_query(),
            duckdb_client,
            self.database_accessor,
            self.database_provider,
        ).fetchone()
    except duckdb.Error:
        empty_table = f"Error while executing data check query on {self.table}"
    else:
        empty_table = result[0] if result else self.table
        is_empty_table = bool(empty_table)

    if not is_empty_table:
        return {}

    date = self.date_filter["value"] if self.date_filter else dt.datetime.now(tz=dt.UTC).date().isoformat()
    self.message = f"No data in {empty_table} on {date} for: {self.identifier}"
    self.status = "FAIL"
    return {
        "DATE": date,
        "METRIC_NAME": "data_exists",
        self.identifier_column: self.identifier,
        "TABLE": empty_table,
    }

get_date_filter(filters) staticmethod

Find the date filter (type='date') from the filters dict.

Parameters:

Name Type Description Default
filters dict[str, dict[str, Any]]

The filters dict from get_filters().

required

Returns:

Type Description
tuple[str, dict[str, Any]] | None

A tuple of (filter_name, filter_config) if found, None otherwise.

Source code in src/koality/checks.py
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
@staticmethod
def get_date_filter(filters: dict[str, dict[str, Any]]) -> tuple[str, dict[str, Any]] | None:
    """Find the date filter (type='date') from the filters dict.

    Args:
        filters: The filters dict from get_filters().

    Returns:
        A tuple of (filter_name, filter_config) if found, None otherwise.

    """
    for name, config in filters.items():
        if config.get("type") == "date":
            return name, config
    return None

get_filters(filters_config) staticmethod

Generate a filter dict from filter configurations.

Parameters:

Name Type Description Default
filters_config dict[str, Any]

Dictionary containing filter configurations.

required
Example YAML

filters: partition_date: column: BQ_PARTITIONTIME value: yesterday-2 # 2 days before yesterday type: date # auto-parses value as date shop_id: column: shopId value: EC0601 type: identifier revenue: column: total_revenue value: 1000 operator: ">=" category: column: category value: ["toys", "electronics"] operator: "IN"

Returns:

Type Description
dict[str, dict[str, Any]]

A dict of the format: {"partition_date": {"column": "DATE", "value": "2020-01-01", "operator": "=", "type": "date"}, ...}

Source code in src/koality/checks.py
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
@staticmethod
def get_filters(filters_config: dict[str, Any]) -> dict[str, dict[str, Any]]:
    """Generate a filter dict from filter configurations.

    Args:
        filters_config: Dictionary containing filter configurations.

    Example YAML:
        filters:
          partition_date:
            column: BQ_PARTITIONTIME
            value: yesterday-2  # 2 days before yesterday
            type: date  # auto-parses value as date
          shop_id:
            column: shopId
            value: EC0601
            type: identifier
          revenue:
            column: total_revenue
            value: 1000
            operator: ">="
          category:
            column: category
            value: ["toys", "electronics"]
            operator: "IN"

    Returns:
        A dict of the format:
            {"partition_date": {"column": "DATE", "value": "2020-01-01", "operator": "=", "type": "date"}, ...}

    """
    filters: dict[str, dict[str, Any]] = {}

    for filter_name, config in filters_config.items():
        if isinstance(config, FilterConfig):
            config_dict = config.model_dump()
        elif isinstance(config, dict):
            config_dict = config
        else:
            config_dict = {"value": config}

        column = config_dict.get("column")
        if column is None:
            continue

        value = config_dict.get("value")
        filter_type = config_dict.get("type", "other")

        # Auto-parse date values when type is "date" or parse_as_date is True
        should_parse = filter_type == "date" or config_dict.get("parse_as_date", False)
        if should_parse and value is not None:
            value = parse_date(str(value))

        operator = config_dict.get("operator", "=")

        filters[filter_name] = {
            "column": column,
            "value": value,
            "operator": operator,
            "type": filter_type,
        }

    return filters

get_identifier_filter(filters) staticmethod

Find the identifier filter (type='identifier') from the filters dict.

Parameters:

Name Type Description Default
filters dict[str, dict[str, Any]]

The filters dict from get_filters().

required

Returns:

Type Description
tuple[str, dict[str, Any]] | None

A tuple of (filter_name, filter_config) if found, None otherwise.

Source code in src/koality/checks.py
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
@staticmethod
def get_identifier_filter(filters: dict[str, dict[str, Any]]) -> tuple[str, dict[str, Any]] | None:
    """Find the identifier filter (type='identifier') from the filters dict.

    Args:
        filters: The filters dict from get_filters().

    Returns:
        A tuple of (filter_name, filter_config) if found, None otherwise.

    """
    for name, config in filters.items():
        if config.get("type") == "identifier":
            return (name, config)
    return None

DuplicateCheck

Bases: ColumnTransformationCheck

Check the number of duplicates for a specific column.

Counts all rows minus distinct counts. Inherits from ColumnTransformationCheck.

Example: DuplicateCheck( database_accessor="my-gcp-project.SHOP01", database_provider=None, table="my-gcp-project.SHOP01.skufeed_latest", check_column="sku_id", filters={ "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, "date": {"column": "DATE", "value": "2023-01-01", "type": "date"}, }, lower_threshold=0.0, upper_threshold=0.0, )

Source code in src/koality/checks.py
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
class DuplicateCheck(ColumnTransformationCheck):
    """Check the number of duplicates for a specific column.

    Counts all rows minus distinct counts. Inherits from ColumnTransformationCheck.

    Example:
    DuplicateCheck(
        database_accessor="my-gcp-project.SHOP01",
        database_provider=None,
        table="my-gcp-project.SHOP01.skufeed_latest",
        check_column="sku_id",
        filters={
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
            "date": {"column": "DATE", "value": "2023-01-01", "type": "date"},
        },
        lower_threshold=0.0,
        upper_threshold=0.0,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the duplicate check."""
        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="duplicates",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for counting duplicates."""
        return f"COUNT(*) - COUNT(DISTINCT {self.check_column}) AS {self.name}"

__init__(database_accessor, database_provider, table, check_column, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the duplicate check.

Source code in src/koality/checks.py
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the duplicate check."""
    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="duplicates",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

transformation_statement()

Return the SQL statement for counting duplicates.

Source code in src/koality/checks.py
862
863
864
def transformation_statement(self) -> str:
    """Return the SQL statement for counting duplicates."""
    return f"COUNT(*) - COUNT(DISTINCT {self.check_column}) AS {self.name}"

IqrOutlierCheck

Bases: ColumnTransformationCheck

Check if a column value is an outlier based on the interquartile range (IQR) method.

Inherits from koality.checks.ColumnTransformationCheck, and thus, we refer to argument descriptions in its super class.

The IQR method is based on the 25th and 75th percentiles of the data. The thresholds are calculated as follows: - lower_threshold = q25 - iqr_factor * (q75 - q25) - upper_threshold = q75 + iqr_factor * (q75 - q25)

Parameters:

Name Type Description Default
filters dict[str, Any] | None

Filter configuration dict. Must include a filter with type='date'.

None
interval_days int

Number of historic days to use for IQR calculation.

required
how Literal['both', 'upper', 'lower']

Check mode - 'both', 'upper', or 'lower' outliers.

required
iqr_factor float

Multiplier for IQR range (minimum 1.5).

required

Example: IqrOutlierCheck( database_accessor="my-gcp-project.SHOP01", database_provider=None, check_column="num_orders", table="my-gcp-project.SHOP01.orders", interval_days=14, how="both", iqr_factor=1.5, filters={ "partition_date": {"column": "DATE", "value": "2023-01-01", "type": "date"}, "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, }, )

Source code in src/koality/checks.py
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
class IqrOutlierCheck(ColumnTransformationCheck):
    """Check if a column value is an outlier based on the interquartile range (IQR) method.

    Inherits from `koality.checks.ColumnTransformationCheck`, and thus, we refer to
    argument descriptions in its super class.

    The IQR method is based on the 25th and 75th percentiles of the data. The
    thresholds are calculated as follows:
        - lower_threshold = q25 - iqr_factor * (q75 - q25)
        - upper_threshold = q75 + iqr_factor * (q75 - q25)

    Args:
        filters: Filter configuration dict. Must include a filter with type='date'.
        interval_days: Number of historic days to use for IQR calculation.
        how: Check mode - 'both', 'upper', or 'lower' outliers.
        iqr_factor: Multiplier for IQR range (minimum 1.5).

    Example:
    IqrOutlierCheck(
        database_accessor="my-gcp-project.SHOP01",
        database_provider=None,
        check_column="num_orders",
        table="my-gcp-project.SHOP01.orders",
        interval_days=14,
        how="both",
        iqr_factor=1.5,
        filters={
            "partition_date": {"column": "DATE", "value": "2023-01-01", "type": "date"},
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
        },
    )

    """

    MIN_IQR_FACTOR = 1.5

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        check_column: str,
        table: str,
        interval_days: int,
        how: Literal["both", "upper", "lower"],
        iqr_factor: float,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the IQR outlier check."""
        # Find date filter by type
        filters = filters or {}
        date_filter = None
        for config in filters.values():
            cfg = config.model_dump() if isinstance(config, FilterConfig) else config
            if cfg.get("type") == "date":
                date_filter = cfg
                break

        if not date_filter or not date_filter.get("column") or date_filter.get("value") is None:
            msg = "IqrOutlierCheck requires a filter with type='date'"
            raise KoalityError(msg)

        if interval_days < 1:
            msg = "interval_days must be at least 1"
            raise KoalityError(msg)
        self.interval_days = int(interval_days)
        if how not in ["both", "upper", "lower"]:
            msg = "how must be one of 'both', 'upper', 'lower'"
            raise KoalityError(msg)
        self.how = how
        # reasonable lower bound for iqr_factor
        if iqr_factor < self.MIN_IQR_FACTOR:
            msg = f"iqr_factor must be at least {self.MIN_IQR_FACTOR}"
            raise KoalityError(msg)
        self.iqr_factor = float(iqr_factor)

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name=f"outlier_iqr_{self.how}_{str(self.iqr_factor).replace('.', '_')}",
            table=table,
            check_column=check_column,
            lower_threshold=-math.inf,
            upper_threshold=math.inf,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

        # Remove date filter from WHERE clause (it's used in the interval SQL, not WHERE)
        self.filters = {name: cfg for name, cfg in self.filters.items() if cfg.get("type") != "date"}

    def transformation_statement(self) -> str:
        """Return the SQL statement for IQR-based outlier detection."""
        # TODO: currently we only raise an error if there is no data for the date
        #       we could also raise an error if there is not enough data for the
        #       IQR calculation
        where_statement = ""
        filter_columns = ""
        date_col = self.date_filter["column"]
        date_val = self.date_filter["value"]

        if self.filters:
            filter_columns = ",\n".join([v["column"] for v in self.filters.values()])
            filter_columns = ",\n" + filter_columns
            where_statement = self.assemble_where_statement(self.filters)
            where_statement = "\nAND\n" + where_statement.removeprefix("WHERE\n")
        return f"""
        WITH
            base AS (
                SELECT
                    DATE({date_col}) AS {date_col},
                    {self.check_column}
                    {filter_columns}
                FROM
                    {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
                WHERE
                    DATE({date_col}) BETWEEN (DATE '{date_val}' - INTERVAL {self.interval_days} DAY)
                    AND DATE '{date_val}'
                    {where_statement}
            ),
            compare AS (
                SELECT * FROM base WHERE {date_col} < DATE '{date_val}'
            ),
            slice AS (
                SELECT * FROM base WHERE {date_col} = DATE '{date_val}'
            ),
            percentiles AS (
                SELECT
                  QUANTILE_CONT(CAST({self.check_column} AS FLOAT), 0.25) AS q25,
                  QUANTILE_CONT(CAST({self.check_column} AS FLOAT), 0.75) AS q75
                FROM
                  compare
            ),
            stats AS (
                SELECT
                  * exclude ({self.check_column}),
                  {self.check_column} AS {self.name},
                  (percentiles.q25 - {self.iqr_factor} * (percentiles.q75 - percentiles.q25)) AS lower_threshold,
                  (percentiles.q75 + {self.iqr_factor} * (percentiles.q75 - percentiles.q25)) AS upper_threshold,
                FROM
                  slice
                LEFT JOIN percentiles
                ON TRUE
            )
        """  # noqa: E501

    def query_boilerplate(self, metric_statement: str) -> str:
        """Return the query structure for IQR outlier detection."""
        return f"""
            {metric_statement}

            SELECT
                *
            FROM
                stats
        """

    def _check(self, duckdb_client: duckdb.DuckDBPyConnection, query: str) -> tuple[list[dict], str | None]:
        """Execute check and update thresholds from IQR calculation."""
        result, error = super()._check(duckdb_client, query)
        # overwrite the lower and upper thresholds as required
        if result:
            if self.how in ["both", "lower"]:
                self.lower_threshold = result[0]["lower_threshold"]
            if self.how in ["both", "upper"]:
                self.upper_threshold = result[0]["upper_threshold"]
        return result, error

    def assemble_data_exists_query(self) -> str:
        """Assemble the query to check if data exists for IQR outlier detection."""
        data_exists_query = f"""
        SELECT
            IF(COUNTIF({self.check_column} IS NOT NULL) > 0, '', '{self.table}') AS empty_table
        FROM
            {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
        """
        date_col = self.date_filter["column"]
        date_val = self.date_filter["value"]

        where_statement = self.assemble_where_statement(self.filters)
        if where_statement:
            where_statement = f"{where_statement} AND CAST({date_col} AS DATE) = DATE '{date_val}'"
        else:
            where_statement = f"WHERE CAST({date_col} AS DATE) = DATE '{date_val}'"
        return f"{data_exists_query}\n{where_statement}"

__init__(database_accessor, database_provider, check_column, table, interval_days, how, iqr_factor, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the IQR outlier check.

Source code in src/koality/checks.py
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    check_column: str,
    table: str,
    interval_days: int,
    how: Literal["both", "upper", "lower"],
    iqr_factor: float,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the IQR outlier check."""
    # Find date filter by type
    filters = filters or {}
    date_filter = None
    for config in filters.values():
        cfg = config.model_dump() if isinstance(config, FilterConfig) else config
        if cfg.get("type") == "date":
            date_filter = cfg
            break

    if not date_filter or not date_filter.get("column") or date_filter.get("value") is None:
        msg = "IqrOutlierCheck requires a filter with type='date'"
        raise KoalityError(msg)

    if interval_days < 1:
        msg = "interval_days must be at least 1"
        raise KoalityError(msg)
    self.interval_days = int(interval_days)
    if how not in ["both", "upper", "lower"]:
        msg = "how must be one of 'both', 'upper', 'lower'"
        raise KoalityError(msg)
    self.how = how
    # reasonable lower bound for iqr_factor
    if iqr_factor < self.MIN_IQR_FACTOR:
        msg = f"iqr_factor must be at least {self.MIN_IQR_FACTOR}"
        raise KoalityError(msg)
    self.iqr_factor = float(iqr_factor)

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name=f"outlier_iqr_{self.how}_{str(self.iqr_factor).replace('.', '_')}",
        table=table,
        check_column=check_column,
        lower_threshold=-math.inf,
        upper_threshold=math.inf,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

    # Remove date filter from WHERE clause (it's used in the interval SQL, not WHERE)
    self.filters = {name: cfg for name, cfg in self.filters.items() if cfg.get("type") != "date"}

assemble_data_exists_query()

Assemble the query to check if data exists for IQR outlier detection.

Source code in src/koality/checks.py
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
def assemble_data_exists_query(self) -> str:
    """Assemble the query to check if data exists for IQR outlier detection."""
    data_exists_query = f"""
    SELECT
        IF(COUNTIF({self.check_column} IS NOT NULL) > 0, '', '{self.table}') AS empty_table
    FROM
        {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
    """
    date_col = self.date_filter["column"]
    date_val = self.date_filter["value"]

    where_statement = self.assemble_where_statement(self.filters)
    if where_statement:
        where_statement = f"{where_statement} AND CAST({date_col} AS DATE) = DATE '{date_val}'"
    else:
        where_statement = f"WHERE CAST({date_col} AS DATE) = DATE '{date_val}'"
    return f"{data_exists_query}\n{where_statement}"

query_boilerplate(metric_statement)

Return the query structure for IQR outlier detection.

Source code in src/koality/checks.py
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
def query_boilerplate(self, metric_statement: str) -> str:
    """Return the query structure for IQR outlier detection."""
    return f"""
        {metric_statement}

        SELECT
            *
        FROM
            stats
    """

transformation_statement()

Return the SQL statement for IQR-based outlier detection.

Source code in src/koality/checks.py
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
def transformation_statement(self) -> str:
    """Return the SQL statement for IQR-based outlier detection."""
    # TODO: currently we only raise an error if there is no data for the date
    #       we could also raise an error if there is not enough data for the
    #       IQR calculation
    where_statement = ""
    filter_columns = ""
    date_col = self.date_filter["column"]
    date_val = self.date_filter["value"]

    if self.filters:
        filter_columns = ",\n".join([v["column"] for v in self.filters.values()])
        filter_columns = ",\n" + filter_columns
        where_statement = self.assemble_where_statement(self.filters)
        where_statement = "\nAND\n" + where_statement.removeprefix("WHERE\n")
    return f"""
    WITH
        base AS (
            SELECT
                DATE({date_col}) AS {date_col},
                {self.check_column}
                {filter_columns}
            FROM
                {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
            WHERE
                DATE({date_col}) BETWEEN (DATE '{date_val}' - INTERVAL {self.interval_days} DAY)
                AND DATE '{date_val}'
                {where_statement}
        ),
        compare AS (
            SELECT * FROM base WHERE {date_col} < DATE '{date_val}'
        ),
        slice AS (
            SELECT * FROM base WHERE {date_col} = DATE '{date_val}'
        ),
        percentiles AS (
            SELECT
              QUANTILE_CONT(CAST({self.check_column} AS FLOAT), 0.25) AS q25,
              QUANTILE_CONT(CAST({self.check_column} AS FLOAT), 0.75) AS q75
            FROM
              compare
        ),
        stats AS (
            SELECT
              * exclude ({self.check_column}),
              {self.check_column} AS {self.name},
              (percentiles.q25 - {self.iqr_factor} * (percentiles.q75 - percentiles.q25)) AS lower_threshold,
              (percentiles.q75 + {self.iqr_factor} * (percentiles.q75 - percentiles.q25)) AS upper_threshold,
            FROM
              slice
            LEFT JOIN percentiles
            ON TRUE
        )
    """  # noqa: E501

MatchRateCheck

Bases: DataQualityCheck

Checks the match rate between two tables after joining on specific columns.

If left_join_columns (or right_join_columns) is defined, these columns will be used for joining the data. If not, join_columns will be used as fallback.

Parameters:

Name Type Description Default
left_table str

Name of table for left part of join (e.g., "my-gcp-project.SHOP01.identifier_base")

required
right_table str

Name of table for right part of join (e.g., "my-gcp-project.SHOP01.feature_baseline")

required
check_column str

Name of column to be checked (e.g., "product_number")

required
join_columns list[str] | None

List of columns to join data on (e.g., ["PREDICTION_DATE", "product_number"])

None
join_columns_left list[str] | None

List of columns of left table to join data on (e.g., ["BQ_PARTITIONTIME", "productId"])

None
join_columns_right list[str] | None

List of columns of right table to join data on (e.g., ["PREDICTION_DATE", "product_number"])

None
lower_threshold float

Check will fail if check result < lower_threshold

-inf
upper_threshold float

Check will fail if check result > upper_threshold

inf
monitor_only bool

If True, no checks will be performed

False
extra_info str | None

Optional additional text that will be added to the end of the failure message

None

Example: MatchRateCheck( database_accessor="my-gcp-project.SHOP01", database_provider=None, left_table="my-gcp-project.SHOP01.pdp_views", right_table="my-gcp-project.SHOP01.skufeed_latest", join_columns_left=["DATE", "product_number_v2"], join_columns_right=["DATE", "product_number"], check_column="product_number", filters={ "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, "date": {"column": "DATE", "value": "2023-01-01", "type": "date"}, }, filters_left={ "status": {"column": "order_status", "value": "completed"}, }, filters_right={ "active": {"column": "is_active", "value": True}, }, )

Source code in src/koality/checks.py
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
class MatchRateCheck(DataQualityCheck):
    """Checks the match rate between two tables after joining on specific columns.

    If left_join_columns (or right_join_columns) is defined, these columns will be
    used for joining the data. If not, join_columns will be used as fallback.

    Args:
        left_table: Name of table for left part of join
                    (e.g., "my-gcp-project.SHOP01.identifier_base")
        right_table: Name of table for right part of join
                     (e.g., "my-gcp-project.SHOP01.feature_baseline")
        check_column: Name of column to be checked (e.g., "product_number")
        join_columns: List of columns to join data on (e.g., ["PREDICTION_DATE", "product_number"])
        join_columns_left: List of columns of left table to join data on
                           (e.g., ["BQ_PARTITIONTIME", "productId"])
        join_columns_right: List of columns of right table to join data on
                            (e.g., ["PREDICTION_DATE", "product_number"])
        lower_threshold: Check will fail if check result < lower_threshold
        upper_threshold: Check will fail if check result > upper_threshold
        monitor_only: If True, no checks will be performed
        extra_info: Optional additional text that will be added to the end of the failure message

    Example:
    MatchRateCheck(
        database_accessor="my-gcp-project.SHOP01",
        database_provider=None,
        left_table="my-gcp-project.SHOP01.pdp_views",
        right_table="my-gcp-project.SHOP01.skufeed_latest",
        join_columns_left=["DATE", "product_number_v2"],
        join_columns_right=["DATE", "product_number"],
        check_column="product_number",
        filters={
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
            "date": {"column": "DATE", "value": "2023-01-01", "type": "date"},
        },
        filters_left={
            "status": {"column": "order_status", "value": "completed"},
        },
        filters_right={
            "active": {"column": "is_active", "value": True},
        },
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        left_table: str,
        right_table: str,
        check_column: str,
        join_columns: list[str] | None = None,
        join_columns_left: list[str] | None = None,
        join_columns_right: list[str] | None = None,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        monitor_only: bool = False,
        extra_info: str | None = None,
        filters: dict[str, Any] | None = None,
        filters_left: dict[str, Any] | None = None,
        filters_right: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
    ) -> None:
        """Initialize the match rate check."""
        self.left_table = left_table
        self.right_table = right_table

        if not (join_columns or (join_columns_left and join_columns_right)):
            msg = "No join_columns was provided. Use either join_columns or join_columns_left and join_columns_right"
            raise KoalityError(msg)

        # mypy typing does not understand that None is not possible, thus, we
        # add `or []`
        self.join_columns_left: list[str] = join_columns_left if join_columns_left else join_columns or []
        self.join_columns_right: list[str] = join_columns_right if join_columns_right else join_columns or []

        if not self.join_columns_right or not self.join_columns_left:
            msg = "No join_columns was provided. Use join_columns, join_columns_left, and/or join_columns_right"
            raise KoalityError(msg)

        if len(self.join_columns_left) != len(self.join_columns_right):
            msg = (
                f"join_columns_left and join_columns_right need to have equal length"
                f" ({len(self.join_columns_left)} vs. {len(self.join_columns_right)})."
            )
            raise KoalityError(msg)

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            table=f"{self.left_table}_JOIN_{self.right_table}",
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

        # Support table-specific filters via filters_left and filters_right
        self.filters_left = self.filters | self.get_filters(filters_left or {})
        self.filters_right = self.filters | self.get_filters(filters_right or {})

    def assemble_name(self) -> str:
        """Return the check name for match rate."""
        return f"{self.check_column.split('.')[-1]}_matchrate"

    def assemble_query(self) -> str:
        """Assemble the SQL query for calculating match rate between tables."""
        right_column_statement = ",\n    ".join(self.join_columns_right)

        join_on_statement = "\n    AND\n    ".join(
            [
                f"lefty.{left_col} = righty.{right_col.split('.')[-1]}"
                for left_col, right_col in zip(self.join_columns_left, self.join_columns_right, strict=False)
            ],
        )

        return f"""
        WITH
            righty AS (
                SELECT DISTINCT
                    {right_column_statement},
                    TRUE AS in_right_table
                FROM
                    {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.right_table}
                {self.assemble_where_statement(self.filters_right)}
            ),
            lefty AS (
                SELECT
                    *
                FROM
                    {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.left_table}
                {self.assemble_where_statement(self.filters_left)}
            )

            SELECT
                CASE
                    WHEN COUNT(*) = 0 THEN 0.0
                    ELSE ROUND(COUNTIF(in_right_table IS TRUE) / COUNT(*), 3)
                END AS {self.name}
            FROM
                lefty
            LEFT JOIN
                righty
            ON
                {join_on_statement}
        """  # noqa: E501

    def assemble_data_exists_query(self) -> str:
        """First checks left, then right table for data.

        Returns:
            Empty table name or empty string

        """
        return f"""
        WITH
        righty AS (
            SELECT
                COUNT(*) AS right_counter,
            FROM
                {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.right_table}
            {self.assemble_where_statement(self.filters_right)}
        ),

        lefty AS (
            SELECT
                COUNT(*) AS left_counter,
            FROM
                {f"{self.database_accessor}." if self.database_accessor else ""}{self.left_table}
            {self.assemble_where_statement(self.filters_left)}
        )

        SELECT
            IF(
                (SELECT * FROM lefty) > 0,
                IF((SELECT * FROM righty) > 0, '', '{self.right_table}'),
                '{self.left_table}'
            ) AS empty_table
        """  # noqa: E501

__init__(database_accessor, database_provider, left_table, right_table, check_column, join_columns=None, join_columns_left=None, join_columns_right=None, lower_threshold=-math.inf, upper_threshold=math.inf, *, monitor_only=False, extra_info=None, filters=None, filters_left=None, filters_right=None, identifier_format='identifier', date_info=None)

Initialize the match rate check.

Source code in src/koality/checks.py
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    left_table: str,
    right_table: str,
    check_column: str,
    join_columns: list[str] | None = None,
    join_columns_left: list[str] | None = None,
    join_columns_right: list[str] | None = None,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    monitor_only: bool = False,
    extra_info: str | None = None,
    filters: dict[str, Any] | None = None,
    filters_left: dict[str, Any] | None = None,
    filters_right: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
) -> None:
    """Initialize the match rate check."""
    self.left_table = left_table
    self.right_table = right_table

    if not (join_columns or (join_columns_left and join_columns_right)):
        msg = "No join_columns was provided. Use either join_columns or join_columns_left and join_columns_right"
        raise KoalityError(msg)

    # mypy typing does not understand that None is not possible, thus, we
    # add `or []`
    self.join_columns_left: list[str] = join_columns_left if join_columns_left else join_columns or []
    self.join_columns_right: list[str] = join_columns_right if join_columns_right else join_columns or []

    if not self.join_columns_right or not self.join_columns_left:
        msg = "No join_columns was provided. Use join_columns, join_columns_left, and/or join_columns_right"
        raise KoalityError(msg)

    if len(self.join_columns_left) != len(self.join_columns_right):
        msg = (
            f"join_columns_left and join_columns_right need to have equal length"
            f" ({len(self.join_columns_left)} vs. {len(self.join_columns_right)})."
        )
        raise KoalityError(msg)

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        table=f"{self.left_table}_JOIN_{self.right_table}",
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

    # Support table-specific filters via filters_left and filters_right
    self.filters_left = self.filters | self.get_filters(filters_left or {})
    self.filters_right = self.filters | self.get_filters(filters_right or {})

assemble_data_exists_query()

First checks left, then right table for data.

Returns:

Type Description
str

Empty table name or empty string

Source code in src/koality/checks.py
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
def assemble_data_exists_query(self) -> str:
    """First checks left, then right table for data.

    Returns:
        Empty table name or empty string

    """
    return f"""
    WITH
    righty AS (
        SELECT
            COUNT(*) AS right_counter,
        FROM
            {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.right_table}
        {self.assemble_where_statement(self.filters_right)}
    ),

    lefty AS (
        SELECT
            COUNT(*) AS left_counter,
        FROM
            {f"{self.database_accessor}." if self.database_accessor else ""}{self.left_table}
        {self.assemble_where_statement(self.filters_left)}
    )

    SELECT
        IF(
            (SELECT * FROM lefty) > 0,
            IF((SELECT * FROM righty) > 0, '', '{self.right_table}'),
            '{self.left_table}'
        ) AS empty_table
    """  # noqa: E501

assemble_name()

Return the check name for match rate.

Source code in src/koality/checks.py
1266
1267
1268
def assemble_name(self) -> str:
    """Return the check name for match rate."""
    return f"{self.check_column.split('.')[-1]}_matchrate"

assemble_query()

Assemble the SQL query for calculating match rate between tables.

Source code in src/koality/checks.py
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
def assemble_query(self) -> str:
    """Assemble the SQL query for calculating match rate between tables."""
    right_column_statement = ",\n    ".join(self.join_columns_right)

    join_on_statement = "\n    AND\n    ".join(
        [
            f"lefty.{left_col} = righty.{right_col.split('.')[-1]}"
            for left_col, right_col in zip(self.join_columns_left, self.join_columns_right, strict=False)
        ],
    )

    return f"""
    WITH
        righty AS (
            SELECT DISTINCT
                {right_column_statement},
                TRUE AS in_right_table
            FROM
                {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.right_table}
            {self.assemble_where_statement(self.filters_right)}
        ),
        lefty AS (
            SELECT
                *
            FROM
                {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.left_table}
            {self.assemble_where_statement(self.filters_left)}
        )

        SELECT
            CASE
                WHEN COUNT(*) = 0 THEN 0.0
                ELSE ROUND(COUNTIF(in_right_table IS TRUE) / COUNT(*), 3)
            END AS {self.name}
        FROM
            lefty
        LEFT JOIN
            righty
        ON
            {join_on_statement}
    """  # noqa: E501

MaxCheck

Bases: ColumnTransformationCheck

Compute the maximum (MAX) of a column for the filtered rows.

Inherits from ColumnTransformationCheck. Thresholds apply to the computed maximum.

Source code in src/koality/checks.py
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
class MaxCheck(ColumnTransformationCheck):
    """Compute the maximum (MAX) of a column for the filtered rows.

    Inherits from ColumnTransformationCheck. Thresholds apply to the computed maximum.
    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the max check."""
        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="max",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for computing the maximum."""
        return f"MAX({self.check_column}) AS {self.name}"

__init__(database_accessor, database_provider, table, check_column, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the max check.

Source code in src/koality/checks.py
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the max check."""
    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="max",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

transformation_statement()

Return the SQL statement for computing the maximum.

Source code in src/koality/checks.py
1028
1029
1030
def transformation_statement(self) -> str:
    """Return the SQL statement for computing the maximum."""
    return f"MAX({self.check_column}) AS {self.name}"

MinCheck

Bases: ColumnTransformationCheck

Compute the minimum (MIN) of a column for the filtered rows.

Inherits from ColumnTransformationCheck. Thresholds apply to the computed minimum.

Source code in src/koality/checks.py
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
class MinCheck(ColumnTransformationCheck):
    """Compute the minimum (MIN) of a column for the filtered rows.

    Inherits from ColumnTransformationCheck. Thresholds apply to the computed minimum.
    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the min check."""
        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="min",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for computing the minimum."""
        return f"MIN({self.check_column}) AS {self.name}"

__init__(database_accessor, database_provider, table, check_column, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the min check.

Source code in src/koality/checks.py
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the min check."""
    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="min",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

transformation_statement()

Return the SQL statement for computing the minimum.

Source code in src/koality/checks.py
1070
1071
1072
def transformation_statement(self) -> str:
    """Return the SQL statement for computing the minimum."""
    return f"MIN({self.check_column}) AS {self.name}"

NullRatioCheck

Bases: ColumnTransformationCheck

Check the share of NULL values in a specific column of a table.

Inherits from ColumnTransformationCheck; see its documentation for argument descriptions.

Example: NullRatioCheck( database_accessor="project.dataset", database_provider=None, table="project.dataset.table", check_column="orders", filters={ "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, "date": {"column": "date", "value": "2023-01-01", "type": "date"}, }, lower_threshold=0.9, upper_threshold=1.0, )

Source code in src/koality/checks.py
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
class NullRatioCheck(ColumnTransformationCheck):
    """Check the share of NULL values in a specific column of a table.

    Inherits from ColumnTransformationCheck; see its documentation for argument descriptions.

    Example:
    NullRatioCheck(
        database_accessor="project.dataset",
        database_provider=None,
        table="project.dataset.table",
        check_column="orders",
        filters={
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
            "date": {"column": "date", "value": "2023-01-01", "type": "date"},
        },
        lower_threshold=0.9,
        upper_threshold=1.0,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the null ratio check."""
        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="null_ratio",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for calculating null ratio."""
        return f"""
            CASE
                WHEN COUNT(*) = 0 THEN 0.0
                ELSE ROUND(COUNTIF({self.check_column} IS NULL) / COUNT(*), 3)
            END AS {self.name}
        """

__init__(database_accessor, database_provider, table, check_column, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the null ratio check.

Source code in src/koality/checks.py
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the null ratio check."""
    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="null_ratio",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

transformation_statement()

Return the SQL statement for calculating null ratio.

Source code in src/koality/checks.py
570
571
572
573
574
575
576
577
def transformation_statement(self) -> str:
    """Return the SQL statement for calculating null ratio."""
    return f"""
        CASE
            WHEN COUNT(*) = 0 THEN 0.0
            ELSE ROUND(COUNTIF({self.check_column} IS NULL) / COUNT(*), 3)
        END AS {self.name}
    """

OccurrenceCheck

Bases: ColumnTransformationCheck

Check how often any value in a column occurs.

Inherits from koality.checks.ColumnTransformationCheck, and thus, we refer to argument descriptions in its super class. Useful e.g. to check for a single product occurring unusually often (likely an error).

Parameters:

Name Type Description Default
max_or_min Literal['max', 'min']

Check either the maximum or minimum occurrence of any value. If you want to check if any value occurs more than x times, use 'max' and upper_threshold=x If you want to check if any value occurs less than y times, use 'min' and lower_threshold=y

required

Example: OccurrenceCheck( database_accessor="my-gcp-project.SHOP01", database_provider=None, max_or_min="max", table="my-gcp-project.SHOP01.skufeed_latest", check_column="sku_id", filters={ "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, "date": {"column": "DATE", "value": "2023-01-01", "type": "date"}, }, lower_threshold=0, upper_threshold=500, )

Source code in src/koality/checks.py
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
class OccurrenceCheck(ColumnTransformationCheck):
    """Check how often any value in a column occurs.

    Inherits from `koality.checks.ColumnTransformationCheck`, and thus, we refer to argument
    descriptions in its super class.
    Useful e.g. to check for a single product occurring unusually often (likely an error).

    Args:
        max_or_min: Check either the maximum or minimum occurrence of any value.
                    If you want to check if any value occurs more than x times, use 'max' and upper_threshold=x
                    If you want to check if any value occurs less than y times, use 'min' and lower_threshold=y

    Example:
    OccurrenceCheck(
        database_accessor="my-gcp-project.SHOP01",
        database_provider=None,
        max_or_min="max",
        table="my-gcp-project.SHOP01.skufeed_latest",
        check_column="sku_id",
        filters={
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
            "date": {"column": "DATE", "value": "2023-01-01", "type": "date"},
        },
        lower_threshold=0,
        upper_threshold=500,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        max_or_min: Literal["max", "min"],
        table: str,
        check_column: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the occurrence check."""
        if max_or_min not in ("max", "min"):
            msg = "'max_or_min' must be one of supported modes 'min' or 'max'"
            raise KoalityError(msg)
        self.max_or_min = max_or_min
        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name=f"occurrence_{max_or_min}",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for counting occurrences."""
        return f"{self.check_column}, COUNT(*) AS {self.name}"

    def assemble_query(self) -> str:
        """Assemble query to find max or min occurrence of any value."""
        # Since koality checks only the first entry, the table with value + count_occurence is
        # ordered DESC/ASC depending on whether max/min occurence is supposed to be checked.
        order = {"max": "DESC", "min": "ASC"}[self.max_or_min]
        return f"""
            {self.query_boilerplate(self.transformation_statement())}
            {self.assemble_where_statement(self.filters)}
            GROUP BY {self.check_column}
            ORDER BY {self.name} {order}
            LIMIT 1  -- only the first entry is needed
        """

__init__(database_accessor, database_provider, max_or_min, table, check_column, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the occurrence check.

Source code in src/koality/checks.py
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    max_or_min: Literal["max", "min"],
    table: str,
    check_column: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the occurrence check."""
    if max_or_min not in ("max", "min"):
        msg = "'max_or_min' must be one of supported modes 'min' or 'max'"
        raise KoalityError(msg)
    self.max_or_min = max_or_min
    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name=f"occurrence_{max_or_min}",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

assemble_query()

Assemble query to find max or min occurrence of any value.

Source code in src/koality/checks.py
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
def assemble_query(self) -> str:
    """Assemble query to find max or min occurrence of any value."""
    # Since koality checks only the first entry, the table with value + count_occurence is
    # ordered DESC/ASC depending on whether max/min occurence is supposed to be checked.
    order = {"max": "DESC", "min": "ASC"}[self.max_or_min]
    return f"""
        {self.query_boilerplate(self.transformation_statement())}
        {self.assemble_where_statement(self.filters)}
        GROUP BY {self.check_column}
        ORDER BY {self.name} {order}
        LIMIT 1  -- only the first entry is needed
    """

transformation_statement()

Return the SQL statement for counting occurrences.

Source code in src/koality/checks.py
1140
1141
1142
def transformation_statement(self) -> str:
    """Return the SQL statement for counting occurrences."""
    return f"{self.check_column}, COUNT(*) AS {self.name}"

RegexMatchCheck

Bases: ColumnTransformationCheck

Check the share of values matching a regex in a specific column of a table.

Inherits from ColumnTransformationCheck; see its documentation for argument descriptions.

Parameters:

Name Type Description Default
regex_to_match str

The regular expression to be checked on check_column (e.g., "SHOP[0-9]{2}-.*" to check for a shop code prefix like "SHOP01-")

required

Example: RegexMatchCheck( database_accessor="project.dataset", database_provider=None, table="project.dataset.table", check_column="orders", regex_to_match="^SHOP[0-9]{2}-.*", filters={"date": {"column": "date", "value": "2023-01-01", "type": "date"}}, lower_threshold=0.9, upper_threshold=1.0, )

Source code in src/koality/checks.py
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
class RegexMatchCheck(ColumnTransformationCheck):
    """Check the share of values matching a regex in a specific column of a table.

    Inherits from ColumnTransformationCheck; see its documentation for argument descriptions.

    Args:
        regex_to_match: The regular expression to be checked on check_column (e.g.,
                        "SHOP[0-9]{2}-.*" to check for a shop code prefix like "SHOP01-")

    Example:
    RegexMatchCheck(
        database_accessor="project.dataset",
        database_provider=None,
        table="project.dataset.table",
        check_column="orders",
        regex_to_match="^SHOP[0-9]{2}-.*",
        filters={"date": {"column": "date", "value": "2023-01-01", "type": "date"}},
        lower_threshold=0.9,
        upper_threshold=1.0,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        regex_to_match: str,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the regex match check."""
        self.regex_to_match = regex_to_match

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="regex_match_ratio",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for calculating regex match ratio."""
        return f"""AVG(IF(REGEXP_MATCHES({self.check_column}, '{self.regex_to_match}'), 1, 0)) AS {self.name}"""

__init__(database_accessor, database_provider, table, check_column, regex_to_match, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the regex match check.

Source code in src/koality/checks.py
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    regex_to_match: str,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the regex match check."""
    self.regex_to_match = regex_to_match

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="regex_match_ratio",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

transformation_statement()

Return the SQL statement for calculating regex match ratio.

Source code in src/koality/checks.py
637
638
639
def transformation_statement(self) -> str:
    """Return the SQL statement for calculating regex match ratio."""
    return f"""AVG(IF(REGEXP_MATCHES({self.check_column}, '{self.regex_to_match}'), 1, 0)) AS {self.name}"""

RelCountChangeCheck

Bases: DataQualityCheck

Check the relative change of a count compared to historic average.

Compares the count to the average counts of a number of historic days before the check date.

Parameters:

Name Type Description Default
table str

Name of table (e.g., "my-gcp-project.SHOP01.feature_category")

required
check_column str

Name of column to be checked (e.g., "category")

required
rolling_days int

The number of historic days to be taken into account for the historic average baseline for the comparison (e.g., 7).

required
lower_threshold float

Check will fail if check result < lower_threshold

-inf
upper_threshold float

Check will fail if check result > upper_threshold

inf
monitor_only bool

If True, no checks will be performed

False
extra_info str | None

Optional additional text that will be added to the end of the failure message

None
filters dict[str, Any] | None

Filter configuration dict. Must include a 'date' filter with column and value.

None

Example: RelCountChangeCheck( database_accessor="my-gcp-project.SHOP01", database_provider=None, table="my-gcp-project.SHOP01.skufeed_latest", check_column="sku_id", rolling_days=7, filters={ "partition_date": {"column": "DATE", "value": "2023-01-01", "type": "date"}, "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, }, lower_threshold=-0.15, upper_threshold=0.15, )

Source code in src/koality/checks.py
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
class RelCountChangeCheck(DataQualityCheck):  # TODO: (non)distinct counts parameter?
    """Check the relative change of a count compared to historic average.

    Compares the count to the average counts of a number of historic days before
    the check date.

    Args:
        table: Name of table (e.g., "my-gcp-project.SHOP01.feature_category")
        check_column: Name of column to be checked (e.g., "category")
        rolling_days: The number of historic days to be taken into account for
                      the historic average baseline for the comparison (e.g., 7).
        lower_threshold: Check will fail if check result < lower_threshold
        upper_threshold: Check will fail if check result > upper_threshold
        monitor_only: If True, no checks will be performed
        extra_info: Optional additional text that will be added to the end of the failure message
        filters: Filter configuration dict. Must include a 'date' filter with column and value.

    Example:
    RelCountChangeCheck(
        database_accessor="my-gcp-project.SHOP01",
        database_provider=None,
        table="my-gcp-project.SHOP01.skufeed_latest",
        check_column="sku_id",
        rolling_days=7,
        filters={
            "partition_date": {"column": "DATE", "value": "2023-01-01", "type": "date"},
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
        },
        lower_threshold=-0.15,
        upper_threshold=0.15,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        rolling_days: int,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the relative count change check."""
        self.rolling_days = rolling_days

        # Find date filter by type
        filters = filters or {}
        date_filter = None
        for config in filters.values():
            cfg = config.model_dump() if isinstance(config, FilterConfig) else config
            if cfg.get("type") == "date":
                date_filter = cfg
                break

        if not date_filter or not date_filter.get("column") or date_filter.get("value") is None:
            msg = "RelCountChangeCheck requires a filter with type='date'"
            raise KoalityError(msg)

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

        # Remove date filter from WHERE clause (it's used in the rolling window SQL, not WHERE)
        self.filters = {name: cfg for name, cfg in self.filters.items() if cfg.get("type") != "date"}

    def assemble_name(self) -> str:
        """Return the check name for count change."""
        return f"{self.check_column.split('.')[-1]}_count_change"

    def assemble_query(self) -> str:
        """Assemble the SQL query for calculating relative count change."""
        where_statement = self.assemble_where_statement(self.filters).replace("WHERE", "AND")
        date_col = self.date_filter["column"]
        date_val = self.date_filter["value"]

        return f"""
        WITH
            base AS (
                SELECT
                    CAST({date_col} AS DATE) AS date_col_cast,
                    COUNT(DISTINCT {self.check_column}) AS dist_cnt
                FROM
                    {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
                WHERE
                    CAST({date_col} AS DATE) BETWEEN (DATE '{date_val}' - INTERVAL {self.rolling_days} DAY)
                    AND DATE '{date_val}'
                {where_statement}
                GROUP BY
                    CAST({date_col} AS DATE)
            ),
            rolling_avgs AS (
                SELECT
                    AVG(dist_cnt) AS rolling_avg
                FROM
                    base
                WHERE
                    date_col_cast BETWEEN (DATE '{date_val}' - INTERVAL {self.rolling_days} DAY)
                AND
                    (DATE '{date_val}' - INTERVAL 1 DAY)
            ),

            -- Helper is needed to cover case where no current data is available
            dist_cnt_helper AS (
                SELECT
                    MAX(dist_cnt) AS dist_cnt
                FROM
                    (
                        SELECT dist_cnt FROM base WHERE date_col_cast = DATE '{date_val}'
                        UNION ALL
                        SELECT 0 AS dist_cnt
                    )
            )

            SELECT
                CASE
                    WHEN rolling_avg = 0 THEN 0.0
                    ELSE ROUND((dist_cnt - rolling_avg) / rolling_avg, 3)
                END AS {self.name}
            FROM
                dist_cnt_helper
            JOIN
                rolling_avgs
            ON TRUE
        """  # noqa: E501

    def assemble_data_exists_query(self) -> str:
        """Assemble the SQL query to check if data exists for the check date."""
        data_exists_query = f"""
        SELECT
            IF(COUNT(*) > 0, '', '{self.table}') AS empty_table
        FROM
            {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
        """
        date_col = self.date_filter["column"]
        date_val = self.date_filter["value"]

        where_statement = self.assemble_where_statement(self.filters)
        if where_statement:
            return f"{data_exists_query}\n{where_statement} AND CAST({date_col} AS DATE) = DATE '{date_val}'"
        return f"{data_exists_query}\nWHERE CAST({date_col} AS DATE) = DATE '{date_val}'"

__init__(database_accessor, database_provider, table, check_column, rolling_days, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the relative count change check.

Source code in src/koality/checks.py
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    rolling_days: int,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the relative count change check."""
    self.rolling_days = rolling_days

    # Find date filter by type
    filters = filters or {}
    date_filter = None
    for config in filters.values():
        cfg = config.model_dump() if isinstance(config, FilterConfig) else config
        if cfg.get("type") == "date":
            date_filter = cfg
            break

    if not date_filter or not date_filter.get("column") or date_filter.get("value") is None:
        msg = "RelCountChangeCheck requires a filter with type='date'"
        raise KoalityError(msg)

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

    # Remove date filter from WHERE clause (it's used in the rolling window SQL, not WHERE)
    self.filters = {name: cfg for name, cfg in self.filters.items() if cfg.get("type") != "date"}

assemble_data_exists_query()

Assemble the SQL query to check if data exists for the check date.

Source code in src/koality/checks.py
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
def assemble_data_exists_query(self) -> str:
    """Assemble the SQL query to check if data exists for the check date."""
    data_exists_query = f"""
    SELECT
        IF(COUNT(*) > 0, '', '{self.table}') AS empty_table
    FROM
        {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
    """
    date_col = self.date_filter["column"]
    date_val = self.date_filter["value"]

    where_statement = self.assemble_where_statement(self.filters)
    if where_statement:
        return f"{data_exists_query}\n{where_statement} AND CAST({date_col} AS DATE) = DATE '{date_val}'"
    return f"{data_exists_query}\nWHERE CAST({date_col} AS DATE) = DATE '{date_val}'"

assemble_name()

Return the check name for count change.

Source code in src/koality/checks.py
1429
1430
1431
def assemble_name(self) -> str:
    """Return the check name for count change."""
    return f"{self.check_column.split('.')[-1]}_count_change"

assemble_query()

Assemble the SQL query for calculating relative count change.

Source code in src/koality/checks.py
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
def assemble_query(self) -> str:
    """Assemble the SQL query for calculating relative count change."""
    where_statement = self.assemble_where_statement(self.filters).replace("WHERE", "AND")
    date_col = self.date_filter["column"]
    date_val = self.date_filter["value"]

    return f"""
    WITH
        base AS (
            SELECT
                CAST({date_col} AS DATE) AS date_col_cast,
                COUNT(DISTINCT {self.check_column}) AS dist_cnt
            FROM
                {f"{self.database_accessor}." if self.database_accessor and not self.query_wrapped else ""}{self.table}
            WHERE
                CAST({date_col} AS DATE) BETWEEN (DATE '{date_val}' - INTERVAL {self.rolling_days} DAY)
                AND DATE '{date_val}'
            {where_statement}
            GROUP BY
                CAST({date_col} AS DATE)
        ),
        rolling_avgs AS (
            SELECT
                AVG(dist_cnt) AS rolling_avg
            FROM
                base
            WHERE
                date_col_cast BETWEEN (DATE '{date_val}' - INTERVAL {self.rolling_days} DAY)
            AND
                (DATE '{date_val}' - INTERVAL 1 DAY)
        ),

        -- Helper is needed to cover case where no current data is available
        dist_cnt_helper AS (
            SELECT
                MAX(dist_cnt) AS dist_cnt
            FROM
                (
                    SELECT dist_cnt FROM base WHERE date_col_cast = DATE '{date_val}'
                    UNION ALL
                    SELECT 0 AS dist_cnt
                )
        )

        SELECT
            CASE
                WHEN rolling_avg = 0 THEN 0.0
                ELSE ROUND((dist_cnt - rolling_avg) / rolling_avg, 3)
            END AS {self.name}
        FROM
            dist_cnt_helper
        JOIN
            rolling_avgs
        ON TRUE
    """  # noqa: E501

RollingValuesInSetCheck

Bases: ValuesInSetCheck

Check share of values matching a value set over a rolling time period.

Similar to ValuesInSetCheck, but the share is computed for a longer time period (currently also including data of the 14 days before the actual check date). It inherits from koality.checks.ValuesInSetCheck, and thus, also from koality.checks.ColumnTransformationCheck, so we refer to argument descriptions in its super class.

Parameters:

Name Type Description Default
filters dict[str, Any] | None

Filter configuration dict. Must include a 'date' filter with column and value.

None

Example: RollingValuesInSetCheck( database_accessor="my-gcp-project.SHOP01", database_provider=None, table="my-gcp-project.SHOP01.orders", check_column="category", value_set='("toys", "shoes")', filters={ "partition_date": {"column": "DATE", "value": "2023-01-01", "type": "date"}, "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, }, lower_threshold=0.9, upper_threshold=1.0, )

Source code in src/koality/checks.py
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
class RollingValuesInSetCheck(ValuesInSetCheck):
    """Check share of values matching a value set over a rolling time period.

    Similar to `ValuesInSetCheck`, but the share is computed for a longer time period
    (currently also including data of the 14 days before the actual check date).
    It inherits from `koality.checks.ValuesInSetCheck`, and thus, also from
    `koality.checks.ColumnTransformationCheck`, so we refer to argument descriptions
    in its super class.

    Args:
        filters: Filter configuration dict. Must include a 'date' filter with column and value.

    Example:
    RollingValuesInSetCheck(
        database_accessor="my-gcp-project.SHOP01",
        database_provider=None,
        table="my-gcp-project.SHOP01.orders",
        check_column="category",
        value_set='("toys", "shoes")',
        filters={
            "partition_date": {"column": "DATE", "value": "2023-01-01", "type": "date"},
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
        },
        lower_threshold=0.9,
        upper_threshold=1.0,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        value_set: str | bytes | Iterable,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
        extra_info: str | None = None,
        monitor_only: bool = False,
    ) -> None:
        """Initialize the rolling values in set check."""
        # Find date filter by type
        filters = filters or {}
        date_filter = None
        for config in filters.values():
            cfg = config.model_dump() if isinstance(config, FilterConfig) else config
            if cfg.get("type") == "date":
                date_filter = cfg
                break

        if not date_filter or not date_filter.get("column") or date_filter.get("value") is None:
            msg = "RollingValuesInSetCheck requires a filter with type='date'"
            raise KoalityError(msg)

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name="rolling_values_in_set_ratio",
            table=table,
            value_set=value_set,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

        # Remove date filter from WHERE clause (it's used in the rolling window SQL, not WHERE)
        self.filters = {name: cfg for name, cfg in self.filters.items() if cfg.get("type") != "date"}

    def assemble_query(self) -> str:
        """Assemble query with rolling date range for values in set check."""
        main_query = self.query_boilerplate(self.transformation_statement())
        date_col = self.date_filter["column"]
        date_val = self.date_filter["value"]

        main_query += (
            "WHERE\n    "
            f"{date_col} BETWEEN (DATE '{date_val}' - INTERVAL 14 DAY) AND DATE '{date_val}'"
        )  # TODO: maybe parameterize interval days

        if where_statement := self.assemble_where_statement(self.filters):
            return main_query + "\nAND\n" + where_statement.removeprefix("WHERE\n")

        return main_query

__init__(database_accessor, database_provider, table, check_column, value_set, lower_threshold=-math.inf, upper_threshold=math.inf, *, filters=None, identifier_format='identifier', date_info=None, extra_info=None, monitor_only=False)

Initialize the rolling values in set check.

Source code in src/koality/checks.py
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    value_set: str | bytes | Iterable,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
    extra_info: str | None = None,
    monitor_only: bool = False,
) -> None:
    """Initialize the rolling values in set check."""
    # Find date filter by type
    filters = filters or {}
    date_filter = None
    for config in filters.values():
        cfg = config.model_dump() if isinstance(config, FilterConfig) else config
        if cfg.get("type") == "date":
            date_filter = cfg
            break

    if not date_filter or not date_filter.get("column") or date_filter.get("value") is None:
        msg = "RollingValuesInSetCheck requires a filter with type='date'"
        raise KoalityError(msg)

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name="rolling_values_in_set_ratio",
        table=table,
        value_set=value_set,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

    # Remove date filter from WHERE clause (it's used in the rolling window SQL, not WHERE)
    self.filters = {name: cfg for name, cfg in self.filters.items() if cfg.get("type") != "date"}

assemble_query()

Assemble query with rolling date range for values in set check.

Source code in src/koality/checks.py
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
def assemble_query(self) -> str:
    """Assemble query with rolling date range for values in set check."""
    main_query = self.query_boilerplate(self.transformation_statement())
    date_col = self.date_filter["column"]
    date_val = self.date_filter["value"]

    main_query += (
        "WHERE\n    "
        f"{date_col} BETWEEN (DATE '{date_val}' - INTERVAL 14 DAY) AND DATE '{date_val}'"
    )  # TODO: maybe parameterize interval days

    if where_statement := self.assemble_where_statement(self.filters):
        return main_query + "\nAND\n" + where_statement.removeprefix("WHERE\n")

    return main_query

ValuesInSetCheck

Bases: ColumnTransformationCheck

Check the share of values that match any value of a value set in a column.

Inherits from ColumnTransformationCheck; see its documentation for argument descriptions.

Parameters:

Name Type Description Default
value_set str | bytes | Iterable

A list of values (or a string representation of such a list) to be checked. Single values are also allowed. Examples for valid inputs: - ["shoes", "clothing"] - "clothing" - '("shoes", "toys")'

required

Example: ValuesInSetCheck( database_accessor="project.dataset", database_provider=None, table="project.dataset.table", check_column="category", value_set='("toys", "shoes")', filters={ "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"}, "date": {"column": "date", "value": "2023-01-01", "type": "date"}, }, lower_threshold=0.9, upper_threshold=1.0, )

Source code in src/koality/checks.py
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
class ValuesInSetCheck(ColumnTransformationCheck):
    """Check the share of values that match any value of a value set in a column.

    Inherits from ColumnTransformationCheck; see its documentation for argument descriptions.

    Args:
        value_set: A list of values (or a string representation of such a list) to be checked.
                   Single values are also allowed. Examples for valid inputs:
                   - ["shoes", "clothing"]
                   - "clothing"
                   - '("shoes", "toys")'

    Example:
    ValuesInSetCheck(
        database_accessor="project.dataset",
        database_provider=None,
        table="project.dataset.table",
        check_column="category",
        value_set='("toys", "shoes")',
        filters={
            "identifier": {"column": "shop_code", "value": "SHOP01", "type": "identifier"},
            "date": {"column": "date", "value": "2023-01-01", "type": "date"},
        },
        lower_threshold=0.9,
        upper_threshold=1.0,
    )

    """

    def __init__(
        self,
        database_accessor: str,
        database_provider: DatabaseProvider | None,
        table: str,
        check_column: str,
        value_set: str | bytes | Iterable,
        lower_threshold: float = -math.inf,
        upper_threshold: float = math.inf,
        *,
        monitor_only: bool = False,
        transformation_name: str | None = None,
        extra_info: str | None = None,
        filters: dict[str, Any] | None = None,
        identifier_format: str = "identifier",
        date_info: str | None = None,
    ) -> None:
        """Initialize the values in set check."""
        self.value_set = to_set(value_set)
        if not self.value_set:
            msg = "'value_set' must not be empty"
            raise KoalityError(msg)
        self.value_set_string = f"({str(self.value_set)[1:-1]})"

        super().__init__(
            database_accessor=database_accessor,
            database_provider=database_provider,
            transformation_name=transformation_name if transformation_name else "values_in_set_ratio",
            table=table,
            check_column=check_column,
            lower_threshold=lower_threshold,
            upper_threshold=upper_threshold,
            filters=filters,
            identifier_format=identifier_format,
            date_info=date_info,
            extra_info=extra_info,
            monitor_only=monitor_only,
        )

    def transformation_statement(self) -> str:
        """Return the SQL statement for calculating values in set ratio."""
        return f"""AVG(IF({self.check_column} IN {self.value_set_string}, 1, 0)) AS {self.name}"""

__init__(database_accessor, database_provider, table, check_column, value_set, lower_threshold=-math.inf, upper_threshold=math.inf, *, monitor_only=False, transformation_name=None, extra_info=None, filters=None, identifier_format='identifier', date_info=None)

Initialize the values in set check.

Source code in src/koality/checks.py
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
def __init__(
    self,
    database_accessor: str,
    database_provider: DatabaseProvider | None,
    table: str,
    check_column: str,
    value_set: str | bytes | Iterable,
    lower_threshold: float = -math.inf,
    upper_threshold: float = math.inf,
    *,
    monitor_only: bool = False,
    transformation_name: str | None = None,
    extra_info: str | None = None,
    filters: dict[str, Any] | None = None,
    identifier_format: str = "identifier",
    date_info: str | None = None,
) -> None:
    """Initialize the values in set check."""
    self.value_set = to_set(value_set)
    if not self.value_set:
        msg = "'value_set' must not be empty"
        raise KoalityError(msg)
    self.value_set_string = f"({str(self.value_set)[1:-1]})"

    super().__init__(
        database_accessor=database_accessor,
        database_provider=database_provider,
        transformation_name=transformation_name if transformation_name else "values_in_set_ratio",
        table=table,
        check_column=check_column,
        lower_threshold=lower_threshold,
        upper_threshold=upper_threshold,
        filters=filters,
        identifier_format=identifier_format,
        date_info=date_info,
        extra_info=extra_info,
        monitor_only=monitor_only,
    )

transformation_statement()

Return the SQL statement for calculating values in set ratio.

Source code in src/koality/checks.py
710
711
712
def transformation_statement(self) -> str:
    """Return the SQL statement for calculating values in set ratio."""
    return f"""AVG(IF({self.check_column} IN {self.value_set_string}, 1, 0)) AS {self.name}"""