pixaris.data_loaders package
Submodules
pixaris.data_loaders.base module
pixaris.data_loaders.gcp module
- class pixaris.data_loaders.gcp.GCPDatasetLoader(gcp_project_id: str, gcp_pixaris_bucket_name: str, project: str, dataset: str, eval_dir_local: str = 'local_experiment_inputs', force_download: bool = True)[source]
Bases:
DatasetLoader
GCPDatasetLoader is a class for loading datasets from a Google Cloud Storage bucket. Upon initialisation, the dataset is downloaded to a local directory.
- Parameters:
gcp_project_id (str) – The Google Cloud Platform project ID.
gcp_pixaris_bucket_name (str) – The name of the Google Cloud Storage bucket.
project (str) – The name of the project containing the evaluation set.
dataset (str) – The name of the evaluation set to download images for.
eval_dir_local (str) – The local directory where evaluation images will be saved. Defaults to “local_experiment_inputs”.
force_download (bool) – Whether to force download the images even if they already exist locally. Defaults to True.
- load_dataset() List[dict[str, List[dict[str, Image]]]] [source]
Returns all images in the evaluation set as an iterator of dictionaries containing PIL Images.
- Returns:
list of dicts containing data loaded from the bucket. The key will always be “pillow_images”. The value is a dict mapping node names to PIL Image objects. This dict has a key for each directory in the image_dirs list representing a Node Name.
- Return type:
List[dict[str, List[dict[str, Image.Image]]]]:
pixaris.data_loaders.local module
- class pixaris.data_loaders.local.LocalDatasetLoader(project: str, dataset: str, eval_dir_local: str = 'local_experiment_inputs')[source]
Bases:
DatasetLoader
- LocalDatasetLoader is a class for loading datasets from a local directory.
Upon initialisation, the dataset is loaded from the local directory.
- Parameters:
project (str) – The name of the project containing the evaluation set.
dataset (str) – The name of the evaluation set to load images for.
eval_dir_local (str) – The local directory where evaluation images are saved. Defaults to “local_experiment_inputs”.
- load_dataset() List[dict[str, List[dict[str, Image]]]] [source]
Returns all images in the evaluation set as an iterable of dictionaries containing PIL Images.
- Returns:
list of dicts containing data loaded from the local directory. The key will always be “pillow_images”. The value is a dict mapping node names to PIL Image objects. This dict has a key for each directory in the image_dirs list representing a Node Name.
- Return type:
List[dict[str, List[dict[str, Image.Image]]]]: